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Abstract
Billions of years ago, the Earth’s waters were dominated by cyanobacteria.
These microbes amassed to such formidable numbers, they ushered in a
new era—starting with the Great Oxidation Event—fuelled by oxygenic pho-
tosynthesis. Throughout the following eon, cyanobacteria ceded portions of
their global aerobic power to new photoautotrophs with the rise of eukary-
otes (i.e. algae and higher plants), which co-existed with cyanobacteria in
aquatic ecosystems. Yet while cyanobacteria’s ecological success story is
one of the most notorious within our planet’s biogeochemical history, scien-
tists to this day still seek to unlock the secrets of their triumph. Now, the
Anthropocene has ushered in a new era fuelled by excessive nutrient inputs
and greenhouse gas emissions, which are again reshaping the Earth’s
biomes. In response, we are experiencing an increase in global cyanobac-
terial bloom distribution, duration, and frequency, leading to unbalanced,
and in many instances degraded, ecosystems. A critical component of the
cyanobacterial resurgence is the freshwater-marine continuum: which
serves to transport blooms, and the toxins they produce, on the premise that
“water flows downhill”. Here, we identify drivers contributing to the cyano-
bacterial comeback and discuss future implications in the context of envi-
ronmental and human health along the aquatic continuum. This Minireview
addresses the overlooked problem of the freshwater to marine continuum
and the effects of nutrients and toxic cyanobacterial blooms moving along
these waters. Marine and freshwater research have historically been con-
ducted in isolation and independently of one another. Yet, this approach
fails to account for the interchangeable transit of nutrients and biology
through and between these freshwater and marine systems, a phenomenon
that is becoming a major problem around the globe. This Minireview high-
lights what we know and the challenges that lie ahead.

INTRODUCTION

The connections between freshwater sources, the
receiving waters of rivers, estuaries, and the coastal
ocean are rooted in a simple principle: water flows
downhill. We are entering a juncture of the Anthropo-
cene and global climatic change, with the combined
effect being unprecedented pressures on ecosystems

and human health (Masson-Delmotte et al., 2018).
Excessive nutrient inputs are accelerating eutrophica-
tion, with negative implications for water quality and its
safe use along the freshwater-marine continuum
(Backer et al., 2010; Boesch et al., 2001; Bukaveckas
et al., 2018; Schindler & Vallentyne, 2008; Wurtsbaugh
et al., 2019) (Figure 1). Moreover, climatic changes
across regional to global scales are exacerbating these
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pressures (Glibert, 2020; Havens & Paerl, 2015;
Huisman et al., 2018; Moss et al., 2011). In particular,
global warming has promoted harmful algal bloom taxa,
especially toxic cyanobacteria (cyanoHABs), which pre-
fer warmer temperatures (Huisman et al., 2018; Paerl &
Huisman, 2008; Wells et al., 2015, 2020) and thrive
under increasingly extreme oscillations in the wet/dry
cycle (Gobler, 2020; Havens et al., 2016; Paerl
et al., 2016, 2018). The purpose of this review is to
describe the physiological characteristics of cyanobac-
teria, which make them ideally suited to persist and
expand in an anthropogenically and climatically altered
world. The irony that the very first oxygenic phototrophs
on Earth (Schopf, 2000) have now successfully
reclaimed their dominance has not escaped our
attention.

Ecophysiology and cyanobacterial
adaptation to climate change across the
continuum

For decades, there has been a concerted research
effort to elucidate the factors responsible for cyanobac-
terial success (Hyenstrand et al., 1998; Paerl &
Barnard, 2020; Stanier, 1977; Wilhelm et al., 2020).
Studies have cited higher growth rates across environ-
mental variables; including light intensity, temperature,
residence time and water column stratification, as major
drivers of cyanobacterial proliferation (Carey
et al., 2012; Mur et al., 1999; Paerl & Huisman, 2008;
Zahra et al., 2020). In addition, CO2 concentrating
mechanisms (CCMs) (Burnap et al., 2015; Price
et al., 2008; Sandrini et al., 2016), gas vesicle-mediated

buoyancy regulation (Brookes et al., 2000; Ganf &
Oliver, 1982; Lürling et al., 2013) and nitrogen (N2) fixa-
tion (Zehr & Paerl, 2008) have been identified as con-
tributors to their historical distribution and dominance.
Yet, while many of these competitive attributes have
been well-studied within past and present contexts
(Huisman et al., 2018; Steffen, Belisle, et al., 2014;
Whitton & Potts, 2012), it remains to be determined
how these qualities will serve as a benefit (or detriment)
to cyanobacteria in the face of climate change along
the freshwater-marine continuum. In addition, the
potential synergistic effects of these variables and their
potential to promote cyanoHABs have yet to be fully
ascertained. While these underlying mechanisms are
the subject of current focus, the research and manage-
ment communities generally agree that climatic
changes (i.e. warming, more extreme wet/dry cycles,
etc.) are leading to cyanobacterial proliferation. Cyano-
HABs are predicted to increase in distribution, duration
and frequency across both the continuum (Paerl
et al., 2018; Paul, 2008) and the globe (Harke
et al., 2016; Huisman et al., 2018). In summary, we are
observing a rebirth of conditions deemed favourable for
cyanobacterial ecological success and dominance—
conditions brought about by human activities.

Climate change is bringing about warmer tempera-
tures, leading to increased thermal stratification of
water columns (Hallegraeff, 2010; Kraemer
et al., 2015). Prior studies indicate that when combined,
higher temperatures and stratification synergistically
favour cyanobacterial dominance (Joehnk et al., 2008;
Paerl & Huisman, 2008; Wagner & Adrian, 2009). Fur-
ther, as temperatures rise, the phytoplankton groups
exhibiting the highest growth rates and abundances are

F I GURE 1 Diagram showing the interactive environmental controls on CyanoHABs along the freshwater-marine continuum. Included are
external (watershed and airshed) nutrient (nitrogen and phosphorus) inputs and internal nutrient cycling, hydrologic (freshwater discharge and its
linkage to residence time) and physical (water column vertical mixing and irradiance) controls as well as linkages to oxygen cycling and food web
interactions. Source: Figure adapted from Paerl, H.W. Toxins 10(2), 76 (2018). doi:10.3390/toxins10020076
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transitioning from diatoms to cyanobacteria across
aquatic ecosystems (Canale & Vogel, 1974; Ke
et al., 2008). For example, the cyanoHAB genus Micro-
cystis spp. has optimal growth temperatures ranging
from 27.5 (You et al., 2018) to 32�C (Van Der
Westhuizen & Eloff, 1985), with additional cyanoHAB
taxa exhibiting even higher optima (Huisman
et al., 2018). Further, cyanoHAB taxa such as Micro-
cystis spp, Dolichospermum spp., and Nodularia spu-
migena have been found to reach peak annual
abundances during maximum summer temperatures
across various temperate lakes (Bertos-Fortis
et al., 2016; Davis et al., 2009; Wagner &
Adrian, 2009). In addition to climate change-induced
expansion of their ecological niche, cyanoHABs are
adept at reshaping their immediate environment them-
selves (Paerl & Millie, 1996; Paerl & Pinckney, 1996),
ensuring their survival at the detriment of other phyto-
plankton taxa. For example, it has been proposed that
cyanobacterial blooms may locally increase water col-
umn temperatures via intense light absorption and heat
entrapment (Ma et al., 2016; Paerl & Huisman, 2008).
This positive feedback loop serves to benefit cyano-
HABs in freshwater systems such as the Baltic Sea
(Kahru et al., 1993), and Lake Ijsselmeer, Netherlands
(Ibelings et al., 2003). Indeed, the affinity of cyanoHABs
to proliferate in warm stratified waters, coupled with the
ability to optimize water column temperature them-
selves, serves to enhance their ecological success in
their expansion along the continuum.

The capacity of cyanobacteria to alter the local envi-
ronment (Paerl, 1996) is further exemplified in the
emerging field of lake basification. In contrast to ‘the
other CO2 problem’ known as ocean acidification
(Doney et al., 2009), lake basification occurs when
dense algal blooms deplete CO2 in the water column
during periods of vigorous photosynthesis, driving up
the pH (Ji et al., 2020; Sandrini et al., 2016; Verspagen
et al., 2014). The water column pH remained at a daily
average of �9.2 for a month during a 2015 Microcystis
spp. bloom in Lake Erie, United States/Canada
(Zepernick et al., 2021), with similar phenomena
observed in Lake Taihu, China (Van Dam et al., 2018)
and Kennemermeer, the Netherlands (Sandrini
et al., 2016). While the aforementioned freshwater sys-
tems observe seasonal cyanoHAB-induced basification
events, other systems exhibit year-round occurrences.
For example, Lake Santa Olalla, Spain exhibited a dra-
matic mean pH of 9.5 throughout a 2 year period, with
the high pH levels attributed to cyanobacterial domi-
nance (Lopez-Archilla et al., 2004). These systems
offer researchers a glimpse into the cyano-dominated
future by exemplifying conditions (such as year-round
basification) that may coincide with extended cyano-
HAB events. To profit from these water column pertur-
bations, cyanobacteria deploy an adaptive response to
these high pH (and CO2 limited) events by altering their

buoyancy and forming surface blooms where CO2 can
be directly intercepted from the atmosphere (Cui
et al., 2016; Hunter et al., 2008; Paerl & Ustach, 1982).
Cyanobacteria also have excellent CCMs under ele-
vated pH conditions (Burnap et al., 2015;
Coleman, 1991; Mangan & Brenner, 2014), affording
them continued access to CO2 during active blooms
using carbonic anhydrases and bicarbonate trans-
porters (Kaplan et al., 1998; Kupriyanova &
Pronina, 2011). While cyanoHABs have been studied
in the context of elevated pH, there has been a growing
emphasis regarding how these high pH, carbon-limited
conditions affect phytoplankton beyond cyanobacteria
(Turner et al., 2021; Wilhelm et al., 2020; Zepernick
et al., 2021). Alkaline pH levels benefit Microcystis spp.
and establish a positive feedback loop for bloom main-
tenance (Krausfeldt et al., 2019; Tang et al., 2018); yet,
these same conditions constrain this cyanobacterium’s
competitors (i.e. freshwater diatoms) who exhibit
decreased Si deposition and growth (Zepernick
et al., 2021). In summary, climate change is expanding
the cyanobacterial ecological niche, and these organ-
isms themselves alter the water column to their benefit;
both of which serve to facilitate their ecological success
across the continuum and the globe.

Yet, when the environmental conditions prove sub-
optimal, cyanobacteria have evolved mechanisms to
evade potential stressors. For example, cyanobacteria
are exceptionally good at scavenging, assimilating and
storing nitrogen (N) and phosphorus (P) compounds
(Blomqvist et al., 1994; Moisander et al., 2008;
Paerl, 2014). These attributes provide a competitive
advantage in planktonic and benthic communities. With
regard to N, Hyenstrand et al. (1998) and Newell et al.
(2019) have shown bloom-forming taxa to have supe-
rior combined N uptake mechanisms compared to
eukaryotic phototrophs, with a strong preference for
reduced forms of N (i.e. NH4, urea). Such scavenging
capabilities can come into play when bloom-induced
pH rises above the pKa of NH4

+/NH3, resulting in
losses of NH3 to the atmosphere. During summer
bloom periods when inorganic forms of N may be
drawn down to low levels, cyanoHABs are also able to
take advantage of water column and sediment regener-
ated N (Hampel et al., 2019). Indeed, many cyanobac-
teria can rapidly vertically migrate throughout the water
column to access nutrient-rich anoxic waters where
reduced N regeneration products are plentiful. Also,
cyanobacteria store cellular N in N-rich phycobilins
(phycocyanin, phycoerythrin) and cyanophycin, ensur-
ing continuous cellular supplies (Grossman et al., 1993;
Mackerras et al., 1990). Numerous cyanoHAB genera
(i.e. Aphanizomenon, Dolichospermum, Cylindrosper-
mopsis, Nodularia) are capable of fixing atmospheric
N2 to NH3, further ensuring access to biologically avail-
able N when combined N sources are depleted. With
regard to P, cyanoHABs similarly possess highly
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efficient uptake mechanisms, and when combined with
the ability to store cellular P as polyphosphates, this
ensures P availability when ambient supplies are low
(Healy, 1982; Paerl, 2014). Overall, cyanoHABs pos-
sess dynamic, high-affinity nutrient uptake mechanisms
and formidable storage strategies, which facilitate their
survival as they navigate the continuum.

Finally, when discussing the ecophysiology of cya-
noHABs and bloom biomass, one must not forget the
attending microbial community, or ‘phycosphere’,
which plays a role in promoting bloom establishment,
persistence and decline (Pound et al., 2021). Indeed,
recent research has indicated certain heterotrophic
constituents of the microbial community, such as
α-proteobacteria Phenylobacterium, have a potential
role in facilitating the dominance of toxic Microcystis
species in Lake Taihu, China and late-stage bloom
maintenance (Huertas Romera & Mallén Ponce, 2021;
Zuo et al., 2021). One particular emerging concern is
evidence that blooms may provide a suitable environ-
ment for multidrug-resistant pathogens and the
exchange of antibiotic resistance genes (Wang
et al., 2020; Zhang et al., 2020). Consequently, the
ecology of bloom-forming cyanobacteria can pose
threats across the continuum, which extend beyond
hypoxia, basification events or the production of toxic
metabolites.

Toxicity: The harm that earns the sobriquet
‘cyanoHABs’

An algal bloom is not a monoculture, and several cya-
nobacterial genotypes of related taxa often coexist
within a bloom (Reynolds, 2006). Many cyanobacteria
produce secondary metabolites that can be toxic to ani-
mals, including humans (Paerl & Otten, 2013), and shift
in toxin production and cyanobacterial taxa can occur
rapidly during the course of a bloom season
(Bukaveckas et al., 2018; Steffen, Zhu, et al., 2014).
Currently, it is very difficult to predict the degree to
which a bloom may change its composition and toxicity
over time. However, there are several factors to con-
sider regarding cyanotoxin production. Increased N
availability has been shown to yield increased produc-
tion of N-rich cyanotoxins such as microcystins (Davis
et al., 2015), with N speciation (NO3

�, NH4
+ and urea)

influencing microcystin congener composition in some
studies (Krausfeldt et al., 2019, 2020; Monchamp
et al., 2014; Puddick et al., 2016). Lower temperatures
also favour increased cellular microcystin quota, poten-
tially yielding more toxic blooms during cooler periods
(Martin et al., 2020; Peng et al., 2018). This latter point
is important considering a changing climate also means
more episodic storms and floods, which not only intro-
duce growth-favouring nutrients but also drop tempera-
tures leading to short-term spikes in toxin production.

Since cyanotoxins are intracellular metabolites,
the risk to human exposure in drinking water can
often be mitigated by the removal of bloom biomass
via filtration and flocculation. However, lysis of cyano-
bacteria will release toxins into the dissolved phase,
resulting in cyanotoxin contamination requiring
aggressive and more costly water treatment proto-
cols. Factors contributing to dissolved toxin release
include salinity, which will increase along the
freshwater-estuarine continuum (Tonk et al., 2007)
and cyanophage activity (McKindles et al., 2020;
Steffen et al., 2017). Given that salinity has also been
shown to influence a shift from phage lysogeny to a
lytic state in environmental Microcystis spp. popula-
tions (Stough et al., 2017), salinity, nutrient and tem-
perature gradients along the continuum provide
multiple mechanisms to increase human exposure to
cyanotoxins. In summary, climate change serves to
exacerbate cyanoHAB toxin distribution, transport,
and exposure across the continuum.

Future mitigation of cyanobacterial HABs
in a changing climate

Unfortunately, we cannot easily mitigate climatic
changes taking place, although significantly reducing
greenhouse gas emissions should remain a high prior-
ity for the long-term protection of the Earth’s resources
(Masson-Delmotte et al., 2018). While emerging
research indicates a potential for future biotically based
mitigation strategies (Huertas Romera & Mallén
Ponce, 2021; Pal et al., 2020; Zuo et al., 2021), the
development and implementation of such mitigation
methods remains to be fully ascertained to date. Thus,
the primary strategy applicable to controlling cyano-
HABs in aquatic ecosystems is the immediate and
aggressive reduction of nutrient inputs (Boesch
et al., 2001; Conley et al., 2009; Paerl et al., 2020;
Paerl & Barnard, 2020). For over a century, we have
been aware of the benefits associated with nutrient
loading reductions. Implementation of this strategy has
been directly linked to water quality improvements in
small aquatic systems (e.g. Lake Washington, USA
and The Canadian Experimental Lakes, Canada)
(Schindler & Vallentyne, 2008) and larger freshwater
and brackish systems (e.g. Baltic Sea, Dutch Estuaries,
Thames River, UK, Chesapeake Bay, Tampa Bay,
USA) (Paerl et al., 2018; Paerl et al., 2020). Early
efforts at tackling eutrophication in freshwater systems
mainly focused on reducing P. This was largely due to
observational and experimental work at that time, which
pointed to P availability as controlling primary produc-
tivity and algal bloom formation (Schindler &
Vallentyne, 2008), while it was shown that N availability
controlled marine primary productivity (Nixon, 1995;
Ryther & Dunstan, 1971).
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Much has changed since the days of clear-cut P or
N limitation of eutrophication and HABs in both fresh-
and salt-water systems. More than a century of exces-
sive anthropogenic P loading has led to a buildup or
‘legacy’ of P in the sediments and water columns of
aquatic systems (Sharpley et al., 2013; Shatwell &
Köhler, 2019). Phosphorus is not easy to remove or
flush out of a water body because it is particle reactive,
allowing it to be retained and internally cycled. In con-
trast, N has natural escape mechanisms, including vol-
atilization of NH3 at high pH and denitrification to N2O
and N2 (Salk et al., 2018), enabling losses of these N-
gases to the atmosphere.

This legacy P has shifted eutrophication nutrient
controls from exclusive P to N&P co-limitation and even
temporal N limitation in many lakes, reservoirs, and riv-
ers (Elser et al., 2007; Lewis et al., 2011; Paerl
et al., 2016). Conversely, prolific use of chemical fertil-
izers and increased wastewater discharge has led to
profound N enrichment, the impact of which has been
to shift downstream riverine, estuarine and coastal
water more towards N and P co-limitation or even P lim-
itation (Deng et al., 2021; Paerl et al., 2016; Sylvan
et al., 2006). Nutrient reductions aimed at limiting cya-
noHABs must take into consideration all these factors.
These reductions can be applied on their own or in con-
cert with other manipulative mitigation steps to reverse
eutrophication, including dredging nutrient-rich sedi-
ments, capping them, altering hydrological regimes by
dam removal, and increasing water flushing, as well as
short-term ‘fixes’ aiming at temporarily arresting HABs
(algaecides, sonication), and improving water column
and sediment environmental conditions through artifi-
cial mixing and oxygenation (Paerl & Barnard, 2020).
To be successful, these engineering-oriented manipu-
lations must be accompanied by comprehensive nutri-
ent management plans. Moreover, these fixes need to
be well-founded in the available research literature; too
often such remediation plans have unintended negative
consequences (Hellweger et al., 2022). Nevertheless,
a cohesive consensus on nutrient reduction strategies
and mitigation tactics will be critical in combatting cya-
noHAB expansion along the continuum.

Humans have had a profound impact on nutrient
loading and nutrient limitation along the freshwater-
marine continuum (Paerl et al., 2016, 2018;
Wurtsbaugh et al., 2019). Nutrient enrichment
upstream can alter downstream nutrient limitation and
productivity dynamics all the way to the coastal ocean
(Paerl, 2009; Wurtsbaugh et al., 2019), with significant
impacts on phytoplankton community composition
(Glibert & Burford, 2017; Paerl et al., 2018). On the river
basin scale, nutrient management aimed at controlling
eutrophication upstream can have ramifications for
downstream water quality, utilization and sustainability
(Paerl et al., 2018). For example, excessive N loading
resulting from high spring runoff and flooding in the

Mississippi Basin can alter nutrient dynamics from N to
P limitation in the receiving waters of the northern Gulf
of Mexico (Sylvan et al., 2006). Furthermore, the ‘fresh-
ening’ associated with extreme rainfall and flooding
events brings with it high nutrient loads, which can alter
coastal habitats for HABs. One example is the prolifera-
tion of toxic cyanobacterial blooms (such as Dolichos-
permum), which were formerly confined to upstream
lakes, estuaries and coastal Gulf of Mexico waters
(Bargu et al., 2019). These rainfall events can also lead
to episodic temperature changes that stimulate cyano-
bacterial taxa such as Planktothrix, which thrives at a
broader temperature range (Davis et al., 2015; Post
et al., 1985). Often, nutrient management aimed at con-
trolling eutrophication and HABs upstream can have
ramifications for water quality, water use and the sus-
tainability of resources in downstream ecosystems.
This calls for ‘scaling up’ regarding linking nutrient
dynamics, human and climatic perturbations and
altered hydrologic conditions on the continuum scale.

The expansion of cyanobacterial HABs
across the aquatic continuum

Freshwater HABs and their toxins are readily trans-
ported along the continuum into estuarine and coastal
waters (Bukaveckas et al., 2018; Tatters et al., 2021)
(Figure 2), where they can be freely incorporated by
downstream shellfish species (Preece et al., 2015,
2017). Recent examples include (1) transport and pro-
liferation of toxic cyanobacterial blooms (Dolichosper-
mum) from upstream lakes, estuaries, and coastal N
Gulf of Mexico waters; a situation that is aggravated by
increased precipitation and floodwater discharges from
the Mississippi watershed (Bargu et al., 2019). (2) Klam-
ath Lake and the Klamath River, OR-CA, where toxic
cyanobacterial (Microcystis) blooms are transported to
coastal Pacific Ocean waters (Genzoli & Kann, 2020).
(3) The San Francisco Bay Delta, where cyanobacterial
(Microcystis, Dolichospermum) blooms originating in
upstream freshwater ‘tracts’ are transported into down-
stream saline San Francisco Bay (Ger et al., 2009;
Lehman et al., 2010). (4) Cyanobacteria-dominated
Pinto Lake, which discharges toxic Microcystis into
Monterey Bay, CA, where it is incorporated into the
food chain via filter-feeding clams that then adversely
affect the health of local sea otter populations (Miller
et al., 2010). Yet, perhaps most dramatic are dense
toxic Microcystis blooms in the largest lake in the
U.S. Southeast, Lake Okeechobee, FL that are trans-
ported via the Caloosahatchee river into estuarine
waters on both the Atlantic (Indian River Lagoon) and
Gulf of Mexico (Sanibel Estuary and Bay) coastlines
(Metcalf et al., 2021; Rosen et al., 2018). This problem
is exacerbated by recent upsurges in high rainfall tropi-
cal cyclones that have resulted in an overflow situation
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in Lake Okeechobee, causing the U.S. Army Corps of
Engineers to release toxic blooms in both directions
away from the lake. Additionally, there are a growing
number of incipient, yet problematic releases of fresh-
water HABs into oligohaline estuaries. One example is
the establishment and proliferation of cyanoHABs in
brackish Albemarle Sound, NC a prime crab and
shrimp fishing site and a major component of the sec-
ond largest estuarine complex in the United States, the
Albemarle-Pamlico Sound, NC (Calandrino &
Paerl, 2011). Lastly, climate change and lake warming
have resulted in blooms forming where cyanoHABs
were never previously thought to occur. Indeed, Doli-
chospermum sp. blooms now occur in cold (but warm-
ing), oligotrophic Lake Superior (Sterner et al., 2020).

In summary, the cyanoHAB ‘colonization’ of these
novel areas across the continuum is already becoming
evident, with climate change serving to facilitate addi-
tional expansion.

CONCLUDING REMARKS

To thwart the anthropogenically driven resurgence of
the cyanobacteria, a broad understanding of cyanobac-
terial ecophysiology, environmental longevity, and con-
tinuum transference is paramount. Additionally, while
nutrient reduction strategies have been regionally
implemented with success, there is a need for a com-
prehensive mitigation strategy across the continuum,

F I GURE 2 CyanoHABs observed along the freshwater-marine continuum. (A) Liangxi River, a tributary of China’s third largest freshwater
lake, Taihu. Source: photo, Hans Paerl.(B) Caloosahatchee River draining Lake Okeechobee, Florida. Source: photo, Miami Herald.(C) Trent
River, North Carolina, which discharges to the USA’s second largest estuarine system, Albemarle-Pamlico Sound. Source: photo, Hans Paerl.
(D) Co-author Hans Paerl, sampling CyanoHAB in Lake Taihu, China. Source: photo, Hai Xu and Hans Paerl. (E) Winam Gulf, Lake Victoria,
Kenya. Source: photo, George Bullerjahn. (F) St. Lucie River entering the Jupiter inlet as a result of water released from Lake Okeechobee,
Florida. Source: photo, Palm Beach Post/Associated Press
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which includes solutions to both cyanoHAB transfer
and the toxins which they produce. In making these
considerations, we must remain cognizant of the fact
that ‘water runs downhill’, and thus a solution to one
region’s problem can quickly become the problem of
another’s downstream. Nevertheless, what we do know
is climate change serves to re-establish cyanobacterial
dominance, with recent evidence demonstrating their
comeback is already well underway. The literature
demonstrates successful mitigation protocols can be
developed both regionally and globally, if supported by
sound science. Yet, the question remains: are we pre-
pared to handle the oncoming threat?
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